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INTERACTION OF AN UNSTEADY TWO-PHASE JET

WITH A LAYER OF A DISPERSE MEDIUM

UDC 532.529D. V. Sadin and K. N. Egorov

Discharge of a two-phase jet from a cylindrical channel into a bounded layer of a disperse medium is
numerically simulated using the equations of the mechanics of heterogeneous media with allowance
for the differences in velocity, temperature, and phase stresses. The effect of separation of the gas
phase from the disperse phase in the layer is revealed and verified experimentally. A comparison with
a similar process of gas discharge at equal initial pressures shows that in the interaction with the
disperse layer, the two-phase flow has a longer momentum and direction.

Introduction. In recent years, two-phase flows have found wide technical application in both traditional
areas (jet transport and fire extinguishing [1, 2]) and new fields (actuation of the final control elements of drives
that do not require special seal [3, 4]).

The goal of the present paper is to study the discharge of a two-phase medium with a nearly close packing
at the initial moment into a bounded layer of a disperse medium. We consider soft media such as semiconsolidate
sands and soils occurring on the surface.

Formulation of the Problem. We consider a two-phase medium within the framework of the model
of a gas-saturated porous medium at a rather high concentration (one of the possible close packings) using the
well-known assumptions [5]. In the rarefied state, the medium is treated as a gas–pseudogas of particles [4]. The
motion of the two-phase mixture can be described by the following equations of conservation of energy, mass, and
momentum, which are unified over the entire region of integration:

∂ρi
∂t

+∇ · ρivi = 0,

∂ρ1v1

∂t
+∇ρ1(v1v1) + β1∇p+ (1− β2)(∇pd −∇σf ) = −β3F µ + β3ρ1g + (1− β2)(ρ1 + ρ2)g,

∂ρ2v2

∂t
+∇ρ2(v2v2) + (1− β1)∇p+ β2(∇pd −∇σf ) = β3F µ − β3ρ1g + β2(ρ1 + ρ2)g,

∂ρ2u2

∂t
+∇ · ρ2u2v2 = Q+Hsh,

∂ρ2k2

∂t
+∇ · ρ2k2v2 + pd∇ · v2 = H(t)

µ −Hsh −Hµ, (1)

∂

∂t
(ρ1E1 + ρ2E2) +∇ · [ρ1E1v1 + ρ2E2v2 + p(α1v1 + α2v2) + pdv2 − σfv2] = ρ1g · v1 + ρ2g · v2,

ρi = ρ0
iαi (i = 1, 2), E1 = u1 + v2

1/2, E2 = u2 + k2 + v2
2/2,
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, β2 =
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1/ρ

0
2)
, β3 =

2
2 + χm(α2 + α1ρ0

1/ρ
0
2)
.

Hereinafter, the subscripts 1 and 2 refer to the parameters of the carrier and disperse phases, respectively, the
superscript 0 refers to true values of density, ∇ is the Hamiltonian, αi, ρi, vi, Ei, and ui are the volume fraction,
normalized density, vector velocity, toal and internal energy of a unit mass of the ith phase, respectively, p, pd, σf ,
k2, and g are the gas pressure, effective pressure due to random particle motion, the tensor of effective stresses,
pulsation energy of a unit mass of the disperse phase, and the free-fall acceleration vector, respectively, F µ, Q,
H

(t)
µ , Hµ, and Hsh are the viscous component of the interphase interaction force, the rate of heat exchange between

the gas and the particles, rate of generation of the energy of random particle motion due to vortex flow, viscous
dissipation, and the dissipation due to inelastic collisions, respectively, χm is a coefficient that takes into account the
effect of the nonsingleness and nonspherical shape of the particles on the attached-mass force (χm = 1 for spherical
particles), and t is time.

To close system (1), we use the equations of state for an ideal, calorifically perfect gas

p = (γ1 − 1)ρ0
1u1, u1 = cvT1

and incompressible solid particles

u2 = c2T2, {γ1, cv, c2, ρ
0
2} ≡ const,

the equation of interphase bonds in the form of the generalized Hooke’s law for a porous saturated medium [5]

σklf = α2[λ(σ)
f εmm2 δkl + 2µ(σ)

f εkl2 + ν
(σ)
f pδkl] for α2 > ᾱ2,

and the equation of a pseudogas of particles [4]

pd = (2/3)G(α2)ρ2k2 for α2 < ᾱ2, G(α2) = 1/[1− (α2/ᾱ2)1/3].

Here T1 and T2 are the temperature of the carrier phase and the particles, γ1 and cv are the adiabatic exponent
and the specific heat of the gas with constant volume, c2 is the specific heat of the particles, ε2 is the macrostrain
tensor for the second phase, λ(σ)

f , µ(σ)
f , and ν

(σ)
f are the characteristics of the porous elastic medium, determined

according to [5, 6], G(α2) is the Enskog correction function, which describes the increase in the number of collisions
in the concentrated gas as compared to the dilute gas, and ᾱ2 is the particle concentration corresponding to close
packing.

The interphase friction intensity F µ and the heat-transfer rate Q are specified by the well-known empir-
ical relations, tested for the problems of this class [5, 7, 8]. The averaged interfacial and interparticle energy
exchange H(t)

µ , Hµ, and Hsh are used in the form given in [4].
We consider the following problems. At the initial instant, a cylindrical channel having a length L = 0.8 m

and a diameter D = 0.1 m is filled with a high-pressure gas at rest (the first problem) and particles (the second
problem) with a nearly close packing (bulk state). The high-pressure chamber is separated from the ambient medium
by a diaphragm. The channel is placed at a depth H = 0.4 m from the surface under a layer of a granular medium.
At time t = 0, the diaphragm is removed. We need to study the flow at t > 0.

The problems were solved for the following initial data: p0 = 1 MPa, pa = 0.1 MPa, Ti0 = Tia = 293 K,
α20 = α2a = 0.5, γ1 = 1.4, cv = 716 m2/(sec2 ·K), c2 = 710 m2/(sec2 ·K), particle diameter is d = 100 µm,
ρ0

2 = 2600 kg/m3, ᾱ2 = 0.63, the subscripts 0 and a refer to the parameters in the high-pressure chamber and
outside it, respectively. In the second problem, it is assumed that α20 = 0.

A solution of the problems is obtained by the method of [9], in which all source components (F µ, Q, H(t)
µ ,

etc.) are taken into account implicitly in the first step. This allows us to increase substantially the stability factor
of the difference scheme. For the two-phase flows considered, the allowable step in time is 3–4 times (for certain
regimes, an order of magnitude) larger than for the case of explicit specification of interphase interactions. This
question is considered in greater detail in [10], where it is shown that rigidity is a fundamental property for a wide
class of problems of the wave dynamics of two-velocity, two-temperature media. Taking into account this property,
we can distinguish schemes of advanced stability.

The boundary conditions for the problems are the nonpenetration condition at the walls and the initial con-
ditions at infinity. The calculations were performed using a through method without distinguishing discontinuities
in the cylindrical (with axial symmetry) coordinate system on a uniform 150 × 50 grid. Calculation results show
that in order to diminish oscillations at α2 > ᾱ2, it is appropriate to supplement the effective stresses in the porous
medium with artificial viscous stresses, for example, of the Landshoff type.
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Fig. 1. Calculations of gas discharge for time t = 0.01 sec ignoring effective stresses: 1) chan-
nel; 2) disperse medium; 3) cavity; 4) gas; 5) layer of close-packed particles (α2 > ᾱ2 = 0.63);
6) interface; solid curves refer to ρ2 = 200, 400, 600, 800, and 1000 kg/m3.

Fig. 2. Calculations of gas discharge for time t = 0.05 sec ignoring (dashed curves) and allowing
(solid curves) for effective stresses (notation same as in Fig. 1).

Results of Numerical Simulation. In the present paper, we consider the case of ν(σ)
f � 1. According to

the classification given in [5], such disperse media are called “soft media” (sands of bulk density and soils adjacent
to the surface). As shown in [5], in the case of soft media, the effective stresses σf can often be neglected.

Test calculations of the first problem were performed under the assumption of no particle interaction. Figure 1
shows calculation results for time t = 0.01 sec. The x axis corresponds to the symmetry axis and the y axis is
directed along the radius. During gas discharge from the channel 1 into the disperse layer 2, an almost spherical
cavity 3 develops. In the vicinity of the cavity, a layer of close-packed particles 5 forms (the dot-and-dashed curve
in Fig. 1 bounds the region of particle concentration in the layer α2 > ᾱ2 = 0.63). The gas is filtered through
the porous medium and, by means of interfacial friction, causes particle motion in the disperse medium. Then, at
t = 0.02 sec, the particle concentration is α2 < ᾱ2 over the entire calculation region. The flow pattern at t = 0.05 sec
is shown in Fig. 2. Here the density fields of the disperse phase are given [dashed isolines are obtained ignoring the
effective stresses, and solid isolines are obtained within the framework of model (1)]. A comparison of the results
obtained shows that interphase interaction is the determining flow mechanism in a soft disperse medium. However,
the use of the model ignoring effective stresses in the layer is quite incorrect. First, at the initial stage of motion,
the particle concentration in the layer α2 > 0.8 exceeds the limiting tetrahedral packing (ᾱ2)tet ≈ 0.74; second, an
increase in the initial pressure in the channel yields α2 > 1, i.e., calculations become unfeasible.
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Fig. 3. Calculations of discharge of the two-phase mixture for time t = 0.05 sec (notation same as in Fig. 1).

Fig. 4. Photograph of a gas-disperse flow discharging into a layer of quartz sand.

Calculations of the discharge of the gas-disperse mixture from the cylindrical channel into the bounded
disperse layer were performed within the framework of the model of a two-phase medium (1) and the problem
formulated. After rupture of the diaphragm, the two-phase mixture begins to escape into the layer, which is
accompanied by the formation of a cavity. With time the mixture phases separate from each other (Fig. 3).
Figure 3 shows calculation results for t = 0.05 sec. It can be seen that with increase in radius, a region 3 with a
predominant volume fraction of the gas forms. Calculations were performed using the through method, and the
cavity boundary was “spread” over one or two to several cells. On the periphery of the two-phase flow, the value
of α2 is less than 1% of the value of ᾱ2 corresponding to the close packing of particles.

The observed effect of phase separation is confirmed experimentally. Figure 4 shows a photograph of a
gas-disperse medium discharging into a layer of quartz sand. Light zones correspond to higher particle density. In
the center, one can see a jet surrounded by a dark zone with low particle concentration. The flow is asymmetric, in
particular, because of insufficiently quick removal of the diaphragm.
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Fig. 5. Gas-pressure distribution along the symmetry axis during discharge of two-phase (a) and
one-phase (b) flows for t = 0.0125 (1), 0.0250 (2), 0.0375 (3), and 0.0500 sec (4).

A comparison of the interaction of the gas and two-phase flows with the layer shows that in the first problem
(see Fig. 2), the cavity grows faster and has a larger volume. An analysis of the shape of the layer surface and
the vector velocity field indicates a more “concentrated” action of the gas-disperse flow. We note that at the same
initial gas pressure in the channel, the initial value of the internal gas energy for the second problem is smaller by
a factor of 1/α1 than that for the first problem. However, according to the calculation data, in a region having a
size of the order of the channel diameter at t = 0.05 sec, the velocity and momentum of the layer are several times
higher in the case of the gas-disperse flow than in the case of the gas flow.

Additional data on the process can be obtained from an analysis of the gas-pressure distribution along
the symmetry axis during discharge of the two-phase (Fig. 5a) and one-phase (Fig. 5b) flows (curves 1–4 refer to
t = 0.0125, 0.0250, 0.0375, and 0.0500 sec, respectively). Interaction of the two-phase flow with the layer is of a wavy
character and results in the formation of characteristic zones. In contrast, the gas discharge is quasisteady-state.
We compare the characteristic times of the processes: the duration of passage of an infinitesimal perturbation from
the edge to the bottom of the channel τj = L/aj , j = 1, 2 [aj is the speed of sound in the two-phase medium [1]
(j = 1) or in the gas (j = 2)] and the observation time. With allowance for the initial data given above, the
characteristic discharge time of the two-phase flow τ1 is comparable to the observation time, whereas for the gas,
the value of τ2 is an order of magnitude smaller.

In the case of two-phase flow discharge (see Fig. 5a), we can distinguish the following characteristic zones. In
the channel (0 6 z 6 L = 0.8 m), the gas pressure decreases in the incident and reflected rarefaction waves, and the
pressure difference relative to atmospheric (initial) pressure remains considerably longer than that in the case of gas
discharge (see Fig. 5b). At larger x/L, there is a “ledge” in the cavity region (see Fig. 5a). This can be explained
by the fast pressure equalization in the gas-disperse flow due to the smaller characteristic size in comparison with
the channel length. Since the granular layer is permeable for the gas, the gas is filtered through the layer, which
results in pressure growth. Finally, at the times considered, the gas pressure above the layer is close to the initial
value.
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